
NOTATION 

d, bead diameter; V, v, flow velocity; Vma x and Vmin, maximum and minimum velocity 
values, respectively; Vx, Vy, v T, and Vn, horizontal, vertical, tangential, and normal 
components of the velocity, respectively; x and y, coordinates; p, liquid density; e, bed 
porosity; v, viscosity; p, hydrodynamic pressure; ~, resistance coefficient; pg, pressure 
in the deformable granular medium; ~, constant; ui, displacements; Yij, deformation; ~, ~, 
stream function; w, vorticity; H, bed height; h, half width of bed; I and k, parameters. 
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MODEL FOR CALCULATING THE ROTATIONAL FLOW PARAMETERS OF A TWO-PHASE 

MEDIUM WITH ALLOWANCE FOR PHASE INTERACTION 

E. F. Shurgal'skii UDC 532.5:533.6.011 

A method is proposed for solving the problem of the rotational flow parameters 
of a two-phase dusty-gas medium in a cylindrical channel. The effect of the 
solid particles on the carrier flow is demonstrated numerically. 

Apparatus using the cyclone effect make it possible to intensify considerably and qual- 
itatively imporve such processes as heat and mass transfer, separation, mixing, and dust 
collecting. In order todesign this apparatus and calculate the operating regimes it is 
necessary to have data on the hydrodynamic flow parameters of the two-phase medium. 

In apparatus with swirling flows the centrifugal forces affect not only the distribu- 
tion of solid-phase concentration over the cross section [I] but also, what is more impor- 
tant, the aerodynamic characteristics of the carrier gas. 

Below we consider a mathematical model and methods of solution applicable to apparatus 
intended for processing dusty gases. As an example we will take a dust catcher with swirl- 
ing counterflows (Fig. i). 
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Fig. i. Flow diagram: A, B) annular swirlers for pri- 
mary and secondary flows; C) outlet channel; D) annular 
solid-phase output channel; rAi , rAo) inside and out- 
side swirler radii; rc) outlet channel radius. 

If the secondary gas flow through swirler B is single-phase, then in the hydrodynamic 
parameter calculation scheme its effect can be taken into account as a factor representing 
injection at given velocities into the primary flow. A two-phase secondary flow consider- 
ably complicates the model owing to the need to take the effect of the "third phase" into 
account. 

Let us consider the flow of a two-phase medium consisting of a compressible carrier 
gas and monodisperse spherical particles in a cylindrical channel of radius R (Fig. I). 
We take the axis of symmetry as the Oz axis of the cylindrical coordinates system (z, r, ~ ); 
the problem is two-dimensional -- all the parameters depend on the coordinates z and r, and 
also on time t. Beyond swirler A a swirling two-phase flow enters the annular orifice rAi~_ 
r < rAo in the initial section of the cylinder z = 0; the mean phase velocities have nonzero 
components in the tangential direction and along the z axis. 

We will consider a cylindrical channel of finite length (0~_z ~-~L); the outlet channel 
C at z = L is fully open, and L > 2R. 

Within the framework of the interpenetrating continua model the system of equations de- 
scribing the motion of the two-phase medium in the cylindrical coordinate system, with allow- 
ance for the two-dimensionality of the flow, takes the form: 

8 r P l ~  Orplulz ~ Orplutr - -  O, 
dt Oz Or 

8rp~ + Orp2u2___.____z_ ~ &p,u,2______ L _ O, 
at  8z & 
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We supp l e men t  s y s t e m  (1) w i t h  t h e  e q u a t i o n s  o f  s t a t e  o f  t h e  p h a s e s ,  a s suming  t h a t  t h e  
c a r r i e r  pha se  i s  a p e r f e c t  gas and t he  s o l i d  p a r t i c l e s  a r e  i n c o m p r e s s i b l e :  

p = p~ (y - -1)  q, el=c,,T~, e2=c.J~,  p~=-const. (2) 

The subscripts i = I, 2 relate to the gas and dispersed phases respectively. 

The expression for the total energy E i is written as follows: 

E~ = e~-~ 0,5 (u~ + u?,~ ~-' u~). (3) 

The interphase interaction due to the carrier phase viscosity is determined from the 
known expression [2, 3] 

F ---- 0.75 Cdp? P2 (u, -- u2) ~, --~d (4) 

The drag coefficient C d is calculated from the empirical formulas for specific inter- 
vals of Reynolds numbers based on the diameter of the spherical particle: 

Cd = 24Re-I + 4Re-0,3a for 0 < R e ~ 7 0 0 ,  

Cd = 4,3 (lgRe) -~ for 700 < Re < 2000, 

Re = p? I~, - -  u~] d/~. 
The interphase heat transfer entering into system (I) is assumed to be proportional 

to the phase temperature difference [2]: 

q~= and N u ~(Tx - -  T~). (5)  

Here n is the number of solid particles per unit volume; Nu = 2 + 0.6Re~/=Pr z/3 In its 
turn, the Prandtl number Pr = CpH/l. 

From system (i) it is clear that the viscosity and thermal conductivity of the carrier 
phase are taken into account only in the terms describing the interphase momentum and energy 
transfer; the buoyant force, proportional to the particle fraction, is not taken into ac- 
count, nor are the forces associated with the apparent mass and the rotation of the parti- 
cles. 

The following boundary conditions apply: (i) for the particles the no-reflection condi- 
tion is imposed at the walls; this means that particles striking the channel walls disappear 
from the flow; (2) there is no leakage of carrier gas through the cylinder walls (no flow 
conditions); (3) at the channel inlet the velocities of both phases, the pressure and density 
of the gas, and the density of the solid phase are all specified as follows: 

z = O ,  t A i l O r . r A g  =Uxo, u2=U~o, P = P o ,  Pl=PlO, P2=P2o (6) 

(it should be noted that u~o and u2o may be different); (4) at the outlet from the cylinder 
in the section z = L (fully open channel) we require that the flow be homogeneous along the 
z axis and hence that the derivatives of the flow parameters with respect to the axial coor- 
dinate be zero; (5) at t = 0 we have a uniform equilibrium distribution of the parameters 
of the two-phase medium in the channel: 

u ~ ( z ,  r, O) = u ~ ( z ,  r,  0 )  = u ~ ,  

Ulr(Z, r, 0 ) =  u2~(z, r, O)-: ul~(z, r, O)= ,Z~,(z, r, O)= O, 

T, (z, r, O)= T~(z, r, 0 ) =  To, (7) 

p~(z, r, 0 )=9!0 ,  P2(z, r, 0)::920. 

The s t a t i o n a r y  s o l u t i o n  o f  t h i s  p r o b l e m  i s  found n u m e r i c a l l y ,  and i n  t h e  p r o c e s s  o f  
c a l c u l a t i n g  v a r i a n t s  w i t h  d i f f e r e n t  b o u n d a r y  v a l u e s  ( 6 ) ,  f o r  c o n v e n i e n c e  and t o  s av e  compu- 
t a t i o n  t i m e ,  t h e  s t e a d y - s t a t e  p a r a m e t e r  d i s t r i b u t i o n s  o f  t h e  p r e v i o u s  v a r i a n t  were  some- 
t i m e s  employed  as i n i t i a l  c o n d i t i o n s  ( 7 ) .  
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Equations (I), (2), (6), and (7) were solved numerically by the method of large parti- 
cles [4]. This method has been successfully employed for calculating supersonic two-phase 
flows; for subsonic velocities a modification of the method has been proposed in which for 
the Euler stage a difference scheme implicit with respect to time is used for calculating 
the pressure [5]. 

Meanwhile, in the case of the problem in question, at sufficiently small subsonic velo- 
cities (M~0.1), calculations in accordancw with this method have shown that it is not very 
accurate. Thus, when M = 0.i the difference between the pressure and the density of the 
carrier phase in the stationary solution and the initial distributions (7) was 10-15%, al- 
though simple estimates using the Bernoulli integral show that this difference should be 
within 1.5-2%. In this paper, in order to improve the accuracy of the method of large par- 
ticles in the case of small subsonic volocities another algorithm for calculating the Euler 
stage is proposed. 

For this purpose let us consider the equations describing the motion of the carrier 
phase in the Euler stage in dimensionless variables (all the parameters are divided by the 
corresponding values at the channel inlet, and the variables r, z, t by the channel radius 
R and the characteristic time R/Ulza , where Ulzo is the given value of the axial gas velo- 
city component at the inlet): 

Ou 1 Op Ov 1 Op 

9 0 t  s Oz 9 at e Or 

Op + (y 1) pd iv  O. 
Or 

u, v, and p are the dimensionless axial and radial components of the velo- 
(8) in difference form 

I n  (8)  e = yMa; 
city vector V and the density of the carrier phase. We write Eqs. 
in accordance with the implicit scheme: 

t l n + l  =::  H,. n . X I n n + [  rLn+l 
~,i ~,~ e9~,i tP i+ l /2 i - - t~ i - l / 2 i f '  

~.+, = v" " (p~+~ , :~ - . " + '  ~.~ ,.~ ~p~,~ ,-~.~-,12), 
p n + l  n n " _ _  t~n+l ) ( u n + l  
, , :  = p , , : -  •  l)p, ,:  [(uT+b~ ~ + ~ ' i - - l / 2 f f  ~ i , ] q - 1 / 2  

. n q - I  - -  q , i - l / 2 ) ] ,  

( 8 )  

( 9 )  

• = ~ / h .  (i0) 

Here �9 and h are the time and coordinate steps; the superscripts relate to the time step, 
the subscripts to the number of the cell; the fractional subscripts correspond to the half- 
sum of the values of the parameter in neighboring cells [4, 5]. 

We eliminate from equation (9) the values of the pressure p~+~ in time step n + I by J,l 

, C i  - -  1 q -  A~ -4- Bi,, 

•  1) ,'Z 
n 8pi, i 

v"+~ - -  " (~-1 /2 , i+1/  - -  ~-1/2,]-1/=)' i+l/2. i-- l /2) Pi_.-.t/2,i vn+x vn+l 

means of equation (i0). Introducing the notation 

: Pi-I /2 ,1  , B i =  ~+1/~,i A~ = x~(~ - -  1) '~ . ~ ( v - -  1) p" 

~0~' j WT, j 

:g n 
n ~ , i - - P i _ l / 2  ' Fi = - -  u~,i + ~PT, i (&+~!2 n i) 

[ ~n  I~.nq-I 
X tt-',+l/2 ,i ~'q+l/2 ,/+1/2 

A* - •  1) P'~, , -~/2 • 1) p" t: ~ , B I  = i . i + l / 2  

~PT, i sOT, i 
c t  = ~ + At + Bt  

F~ = ~ v ~  .Jr  "---W-- [PT,i+ll~--P~,i-112] n x 
~'! 8pi, i 8Pi,i 

n [un- l - I  _ _  u n - ~ l  ~ _ _  n n  {Hnq-I  u n q - i  ~1 
x [ P i , i + 1 / 2 ' .  ~ - t - 1 / 2 , ] - 1 - 1 / 2  i - l / 2 , i q - l / 2 ,  t . i , ] - l / 2  x - i + l / 2 , j _ l / 2  - -  ~ - 1 / 2 , 1 - 1 / 2  ] j "  

n+ i n+ x we obtain a system of equations for ui, j and vi, j, which does not contain the pressure 
n+ x Pi,j' in the form 

A , . 7 +  ,, - c,.~.+.',., + B ~ u T ~ ,  ~ = F~, 

A~ ,+1 .,,+1 .,,+1 ~,, i -  - -  C* 4:- B* F ?  v i  , i  v i  , l q - i  = =  �9 

(Ii) 

(12) 

794 



r/ice 
~ . �9 , . . . . .  J 

/ ,~ ,, . -  " . - -  - .+_ ! 

�9 " t / , ' 1 , " ' 1  2 /~ .  
' ~  J " \ ~ �9 ~ / i l l / i / i l l / i l l /  # 

W..:ii:f  ; i  .......... " 
. . . . .  . ; ; /  . . . .  

0 

2 ;  

i i b 

i 

/~  [ . / / / / / / , ' i x / . "  i l l  

0 

2 

! Z z ' l l l l l l l l l l l l i l ,  

I - 
0 f 2 3 z# 5 Z/r" c 

Projections of streamlines of carrier phase (i) and Fig. 2. 
solid particles 8 and 80 ~m in size (2, 3) at mass concentra- 
tions: a) 02o/Plo = 0.004; b, c) 0=o/021 = i. 

Linear system of equations (ii), (12) was solved by the longitudinal--transverse pivotal 
method using iterations with respect to u and v, by means of which system (Ii) was decoupled 
from system (12). The values of u~+~ and vi~ j- n+i entering into the expressions for F i and F~ 
were replaced by the corresponding~lues taken from the previous iteration. After system 
(ii), (12) has been solved with given accuracy, the Euler stage distribution is determined 
from equations (ii). The remaining stages of the calculation are completed in the same way 
as in [4, 5]. 

Calculations carried out using this algorithm showed that in the steady-state solution 
for Mach numbers of the order of 0.i the difference between the density and the pressure of 
the carrier phase within the channel and their values at the inlet is less than 1%; in this 
case in the calculations we used the rather large • = 0.I. 

In order to estimate the effect of the solid particles on the hydrodynamics of the car- 
rier phase, using a BESM computer and the method developed above we carried out a numerical 
experiment to determine the flow parameters for mass concentrations 02o/0~o = 0.004 and I 
and particle sizes d = 8 and 80 ~m at: (i) a carrier flow Mach number M = 0.08; (2) a ratio 
of the tangential and axial velocity components u1~o/Ulzo = 3.6; (3) a ratio of the totallen~th 
of the cylinder L to its radius R L/R = 6; (4) a flow inlet section rAo/R = 1/2, rAi = 0 
(Fig. i); (5) the structure of the apparatus and the secondary-flow inlet conditions can be 
simulated by introducing steps, as shown in Fig. 2, where the shape and size of the step 
are characterized by the radius r C = R/2 on the section 4~_ z/L~6. 

In Fig. 2 the projections of the streamlines of the gas and the solid particles on the 
longitudinal section are represented in r/r C and z/r C coordinates, where r C is the radius 
of the outlet channel C (Fig. i). 

The data of the numerical experiment presented in Fig. 2a show that at low mass concen- 
trations P2o/P~o = 0.004 the projections of the carrier phase streamlines (continuous curves 
I) for particles 8 and 80 pm in size coincide, i.e., the aerodynamics of the carrier phase 
are unaffected by the solid particles. 

The data of Fig' 2a show that the greatest differences between the streamlines of the 
gas (curves i) and solid phases in the case of small particles (8 um) (curves 2) are observed 
in the peripheral parts of the channel. In the axial region the trajectories of the solid 
and gas phases almost coincide. When the particle size is increased by an order, the differ- 
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ences between the streamlines of the gas (curves i) and solid (curves 3) phases becomes 
considerable, the form of the solid-phase strea~ines being unaffected by the mass concen- 
tration on the interval p2o/~Io = 0.004-1 (Figs. 2a and 2c). 

From Fig. 2c it also follows that an increase in particle size results in a decrease 
in the size of the region of existence of the toroidal eddy, whereas the projections of the 
carrier-phase streamlines in the wall region are similar in nature to those of Fig. 2a. It 
is also clear that at a distance of the order of only two diameters the flow is already free 
of solid particles. Increasing the size of the particles leads to a shortening of the path 
on which phase separation takes place. 

On comparing Figs. 2b and 2c we found that increasing the mass concentration (p2o/p~o = 
i) modifies both the form of the projection of the carrier-phase streamlines and their posi- 
tion in the coordinate grid. An increase in the mass concentration of the 8-~m particles 
"smoothes" the streamlines in the axial direction at the same time as deforming the region 
of the toroidal eddy. 

Thus, from Figs. 2b and 2c we may conclude that the nature of the motion of the carrier 
phase is affected by both the absolute magnitude of the mass concentration and the size of 
the solid particles contained in the flow. 

Numerical experiments carried out, for example, to investigate the configuration of the 
inlet system, the method of swirling the incoming flow, the reverse flows, and the conditions 
of separation of the solid phase and to determine the profile of the velocity components, 
together with control comparisons of the theoretical and experimental data, indicate that 
the proposed method of determining the parameters of the two-phase flow makes it possible to 
perform a detailed functional analysis and to solve problems of the optimal design of appara- 
tus for treating dusty gases. 

NOTATION 

o density of the i-th phase; c2, specific Pi, mean density of the i-th phase; Pi, true 
heat of the particles; Cv, specific heat of the gas at constant volume; ~, dynamic viscosity 
of the gas; ~, thermal conductivity of the gas; Cp, specific heat of the gas at constant 
pressure; y, specific heat ratio of the gas; d, particle diameter; R, radius of the cylindri- 
cal channel; ui, velocity vector of the i-th phase; Uzi, Uir, ui~, components of the velocity 
vector of the i-th phase; Uizo, axial component of the gas velocity in the channel inlet sec- 
tion; p, pressure of the gas phase; ei, internal energy of the i-th phase; E$, total energy 
of the i-th phase; T i, temperature of the i-th phase; Cd, particle drag coeflicient; Re, 
Reynolds number of the relative flow past the particle; Nu, Nusselt number; Pr, Prandtl num- 
ber; M, Mach number of the carrier flow based on the axial velocity in the inlet section. 
Indices: i, phase number; 0, the corresponding parameters are taken in the inlet section; 
i, J, cell number in the difference equations; n, number of the interior layer in the differ- 

ence equations. 
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